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Turbulence cascades across equilibrium spectra

Alexandre J. Chorin
Department of Mathematics, University of California, Berkeley, California 94720-3840
(Received 5 April 1996

Recent work has suggested that the spectrum of fully developed turbulence is determined by the equilibrium
statistics of the Euler equations. The problem is to reconcile this fact with the irreversible aspects of turbulence.
The purpose of this paper is to show that a reconciliation is possible by producing simple systems whose
spectrum can be deduced from an analysis at equilibrium, yet they exhibit an irreversible transfer of an
appropriate variable from large scales to small scales and dissipation. The analysis includes the dependence of
the spectrum on the rate of energy transf&1063-651X96)12609-X|

PACS numbds): 47.27.Ak, 05.20-y

Recent wor{ 1] has suggested that the inert{&glolmog- Consider first the unit square
orov) spectrum of turbulence can be deduced by considerin® ={x,y|0=x<1,0sy=<1}; we are going to implement on
Gibbsian equilibria of vortex filaments. This suggestion isD a discrete version of the baker's transformation
orthogonal to the usual derivation of that spectrlif, x'=2x—[2x], y' = 3(x+[2x]), where[x] denotes the larg-
where the irreversible nature of the energy transfer betweegst integer<x. This transformation is ergodic and mixing
large and small sales constitutes the determining assumptiol#], and thus is not an absurd paradigm for the growth in
It is obvious that turbulence as a whole cannot be viewed agisorder typical of turbulence.
being in a Gibbsian equilibrium, since energy dissipation is To discretize the transformation, divid® into boxes:
one of its most salient features. The natural suggestion is that . . ] )

a full description of turbulence requires only a perturbation, Djj={x,ylih<x<(i+1h, jh=<y<(j+1)h},

small in some appropriate metric, of a Gibbsian equilibrium.
This equilibrium must differ in substantial ways from the . .
Hopf-Lee[3] equilibrium, with the difference due to the im- vValues 0} ...,(n—1). Furthermore, consider the discrete
position of the constraints contained in the equations of quiJunCt'?n ¢={ij}, ¢ij=0 or 1,0_? eactD;; . The discrete
dynamics. Similar arguments have been made in twoPaker's transformationi(j)—(i’,j’) is defined by
dimensional turbulence.

It is not possible at present to decide whether these sug-
gestions are valid by rigorous analysis of the equations of 1
motion. The go_al of the present paper is to show that these X' =2x—[2x], y' ==(y+[2x]), (1)
ideas are plausible by exhibiting simple systems whose spec- 2
trum can be determined from equilibrium considerations, yet,
this spectrum is unchanged when these systems dissipate a i"=x'Ih, j'=y'lh.
quantity by first transporting it across that spectrum to the ) _ _
small scales, where it is lost. In these examples the amplitud@ne can readily check that this transformation maps two
of the spectrum is related to the rate of dissipation, as iPairs (,j) onone (",j’) if i’ is odd, and maps nd (), on
Kolmogorov's law, not because the dissipation creates thél'.j’) if i’ is even. To construct the imagg’ of ¢ under
spectrum, but, conversely, because the higher the amplitudge transformation, consider for odd the sums of the
of the spectrum, the more energy there is to dissipate. Theggs,; at the preimages ofi(,j’), and set¢;, ;,=0 if s=0,
models offer an interesting interpretation of the Kolmogorovand ¢;, j;=1 if s=1. Then, if s<1, set¢; ., =0; if
theory, and open the door to the use of fluctuationS=2, Sete;,,1j=1. This construction preservespdx dy
dissipation theorems and other near-equilibrium methods iand (indeed, [ ¢%x dy for all g). The use of an integer-
turbulence. valued function¢ is designed to eliminate any entropy in-

The first example consists of a discretized baker’s transcrease due to smoothing. It is easily seen that, given an initial
formation[4] transporting a passive quantity through a lad-¢ with few “holes,” the first few steps of the transformation
der of scales. This example is linear, and is included becaudd) approximate well the first few steps of the continuous
of its simplicity. The other example consists of a polymerBaker’s transformation. However, the sequence of discrete
folding in a solution, with mass transported from large scalegnaps of¢ is periodic with period . In Fig. 1 we exhibit
to small scales and dissipated there. Various relations bénitial data and every second subsequent state produced by
tween turbulence theory and polymer dynamics have beethis mapping, withn=32.
presented over the yeaf$], and are closely linked to the Start with initial data¢ with few “holes;” for example,
relation betweenp* field theories and vortex dynami¢§].  with a function ¢ which equals 1 in soméh X |h square|
Our example exhibits noninteger exponents as in the Kolinteger,I<n [as in Fig. 1a)]. For the first few steps, the
mogorov law, and is quite relevant to the broader issues ofenergy” [ ¢?dx dy moves to smaller and smaller scales, as
turbulence theory. in simple models of turbulent cascades. In the maxsteps

whereh=(1/n), n=2" for some integem, andi,j take the

x=ih, y=jh,
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FIG. 1. (a)—(e) Successive states produced by the baker’s transform@ti@ry second state shoyn

the energy comes back; the time average of the energy per Now add an irreversible energy cascade to this model:
scale is a constant independent of scale. One can readily firfstart with “smooth” initial data, for examplep;=1 for
initial data for which the energy starts out roughly equidis-i,j<I,I =[\/Zn], where z=2¢ij /In?<1 is the fraction of
tributed among scales and remains so. We shall not bother &ltes whereg;;=1, as in Fig. 1a). Remove energy at small
define a temperature and an entropy for this system, and shatales by settingp;; to 0 wheneverg;;=1 and ¢;.,;=0,
identify the the equipartition spectrum with an equilibrium d’i,jilzo (i.e., whenever there is an isolated Eeed energy
spectrum. Thus the energy spectrum has the format large scales by filling in the missing 1's whenever the
E(k)=AKk”, with y=0, and its amplitudé\ depends on the initial data would have been recovered if it were not for the
amplitude of the initial data. removal, i.e., once everyn2 steps. Define a rate of energy
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TABLE |. Estimates of the inverse spectral expongnin the presence of a cascade.

p Polymer lengthN

600 900 1200 1500 1800 2100 2400 2700 3000
50 0.562 0.560 0.554 0.557 0.561 0.563 0.565 0.564 0.563
N/6 0.578 0.587 0.583 0.584 0.586 0.581 0.579 0.579 0.579
N/2 0.552 0.565 0.568 0.566 0.568 0.569 0.571 0.571 0.572

2N/3 0.586 0.586 0.584 0.581 0.570 0.576 0.576 0.576 0.574

dissipatione as the ratio of the number of 1's removed per First place the polymer on a cubic lattice, in particular so that
g steps divided by (the limit g—« is reached in Bh step3.  the number of its configurations is finite for finiké identify
It is easy to see that the form of the spectrum is unchangedhe bonds in the lattice with monomers. To allow for the
and that for smallz, A=2me+0(2), i.e., E(K)=2mek?.  finite volume of the monomers, make the lattice polymer
One can also check that dissipation stops wizenz, self-avoiding, i.e., forbid any site from being visited twice.
z,=0.5625, because for largemo isolated 15 appear. For Then list all the isomorphisms of the lattice, i.e. all length-
(z.—2) small and positive, numerical experiment shows thatpreserving transformations that map the lattice on itself; in
e is proportional to A—A)?, whereA, is the amplitude at three space dimensions, there are 48 such isomorphisms, rep-
z=7;, i.e., A=A+Ce"° whereC is a constant. As adver- resented by certain matrices with entries which are either 0,
tised above, there is a relation betweemande, not because 1, or — 1. Pick one end of the polymer to be the “free end.”
the dissipation creates the spectrum but, conversely, becau$ie dynamics proceed as follows: Pick a bond on the poly-
the more energy there s in the “equilibrium” scales, more mer 4t random, rotate the part of the polymer between the
of it can be d|_ss,|pated. The recurrent behavior of the systergynq picked and the free end by one of the isomorphisms
has parallels in vortex dynamis]. _ icked at random with equal probabilities; if the result is
We now turn to polymeric systems. The relation bEzt"\’eerﬁelf-avoiding, this is the next configuration of the polymer; if

polymer statistics and the_ physics of superfluid vortices 'She result is not self-avoiding, the next configuration is taken
well known, as is the relation between polymers and classi-

cal vortex motion1]. In particular, at a well-defined critical as_:_crte.nt;czla(t;.to thle pr'(:‘r\]/ lous cor1|f|gutrr<]a1t|on. ilibri p
temperature the statistics of a polymer and of a vortex fila- IS Tolding algoriinm samples the equilibrium conhigu-

ment are identical. We consider mass transport across scalE%tions of the polymef9]. Following ample pregeder(for
in a single polymer. At equilibrium, in which all the configu- €*@mple, Ref[10]), we pretend that this algorithm repre-

rations of the polymer are equally likely, the relation be-Sents the dynamics of the system, on the theory that true
tween(r ), the average end-to-end length of a polymer withdynamics and the sampling algorithm both probe the same
N units (“monomers”), and the number oN of units is  Set of configurations with the same probabilities once the
(rn)~N#, wherep is the Flory exponenit7]. Flory’s value transients are gone.
for that exponent in three dimensions;is=0.6; the correct We now modify this system so as to create a mass cas-
value is aroundu=0.588. One can define a mass densitycade across scales. Orient the polymer once and for all; after
p=p(x) associated with the polymer, whereis a spatial each rotation in the Madras-Sokal algorithm examine the
location, and a density correlation function for a dilute sus-polymer for “hairpins,” i.e. configurations in which thih
pension of polymerR(r)={p(x)p(x+r)). An easy argu- and (j+2)th segments(the numbering being sequential
ment shows that for small compared to the average length along the polymerare antiparallel; thgth, (j+1)th, and
of a polymer,R(r)=R(r)=constxr®~3, wherer=|r| isthe  (j+2)th then form aU-shaped structuréa “hairpin;” see
length ofr andD=1/u =1.69. Indeed, assuming that there Ref. [11]). This is the smallest-scale structure on a self-
is a monomer ax [something which happens with probabil- avoiding polymer. To create an energy sink at small scales,
ity proportional to p(x)], the number of monomers in a replace this hairpin by a single segment connecting the be-
sphere of radius aroundx is proportional tar®, the number  ginning of thejth segment to the end of thg¢{ 2)th. This
of monomers in a shell betweenandr +dr is proportional removes mass at the smallest scale; the result is obviously
tor®~1, and their density is proportional t& 3. A Fourier  self-avoiding.
transform yields a “mass spectrumi(k)=Ak P, where Every p steps p to be chosen add up the numbevl of
A is a constant an&(k) is the Fourier transform dR inte-  segments lost, and add to one end of the polymer a straight
grated over a sphere of radiks-|k|. The functionE(k) isa  line with M bonds. If it is not possible to construct such a
mass analog of the energy spectrum of hydrodynamics. Thigne without perturbing the polymer, wait a few steps until it
closeness ob to the real value of the Kolmogorov exponent is possible. Experience shows that the wait is short. This
is coincidenta[8]. The constant in the “mass spectrum” law addition of a straight line represents a mass injection at large
is proportional to the mass density; the constant of proporscales. Mass is thus irreversibly transferred from large to
tionality is dimensional and thus not worth pursuing. small scales, where it is removed.

We now endow this system with dynamics, and with a How does this mass transfer affect the spectrum? In Table
mass source at large scales and a mass sink at small scalkwe present the result of a calculation of the expornerih
By way of dynamics we use the Madras-Sokal algorifeh  the relation(ry)~N#* deduced from numerical experiments
that probes the equilibrium configurations of the polymer:with varying N and varying choices op as a function of
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N. The dependence of the results on the number of Montkeuristically transparent, as we expect the number of “hair-
Carlo steps is not shown, because the spread in the resultins” formed in a given number of steps to be proportional
provides a reliable check on the statistical error. The typicato the number of monomers. The spectral law is thus
number of Monte Carlo moves to equilibration was E(k)=Cek P, whereC is a dimensional constant. As in the
K=40N, with only the last half used in the averaging, the paker's transformation, the appearancesdh the law does

rest being used to forget the initial conditions. We concludenot mean that the mass cascade creates the spectrum, but
that the value ofu in the presence of the cascade isgnly that the more mass there is, the larger the energy trans-
n=0.57 with a standard deviation of 0.005, independently ofg,

p. The corresponding exponent in the spectral power law cna may wonder whether the fact thatappears with

_ 7D . _ _ . . .
E(k)=Ak™" is D=u=1.75, with a standard deviation of g,nonent 1 in both examples has some significance which

0.01. Note that these results are not sharp enough to exclugy» s from the value of our examples. This is not the case.
the possibility that there is a small difference between thel.he linear relation betweeR ande in the first example is

equilibrium value of and the value ob in the presence of only an approximation that holds at small amplitude. In the

a cascade, but if there is one, it is smépbmparable with second example, the linear relation is a consequence of the
0.0) and not at all comparable to the difference of 11/3 P, q

between the Hopf equilibrium exponent and the KoImogorovproloomomillty between the number of hairpins and the

exponent; the latter large difference is one reason for théength of the polymer n three space dimensions. One can
belief that the inertial range of turbulence is far from equi—eXpeCt the number of hairpins to grow faster than that length

librium. (Note that a rough calculation of the same generafn the recurring two-dimensional cagES], and thus yield an

kind had already been carried out for a vortex filament modef XPonent Ies; than 1 fq._ The same expectation holds in
in Ref. [12]). vortex dynamics near critical poinf].

A rate of mass transfer can now be estimated: The num- demor?g?arpea{z’e WgssTSi\I/i? g;ohd;vﬁﬁd SS?CF::Z ;ngﬂgsotrg?,t
ber of attempted foldings per unit length of the polymer is - P y Ot having spec ! 9
type be determined by equilibrium considerations, and re-

proportional to the number of Monte Carlo steps divided by 7"
. main unmoved by the presence of energy transfer across
the numberN of monomers.(The relevant number is the . . .
) ) cales. Thus there is not necessarily a dichotomy between the
number of folding per unit length rather than the number of . ; .
kmd of methods used in standard “equilibrium” field theo-

foldings by itself because we are interested in the rate Olies and the kind of methods apbrooriate for turbulence
energy transfer locally in space, in analogy with hydrody- pprop '

namics; without the division byN, the longer the polymer I would like to thank Dr. Ming Gu for carrying out the

the less each section would be folded per unit jirfie rate
of energy transfek is the limit of the limit of number of
segments removed iK steps, divided byKN, as K in-
creases.

Numerical calculation shows thatis, within the statisti-
cal error, proportional to the number of monomBisthis is

calculations for the polymer example and for helplful discus-
sions and comments. This work was supported in part by the
Applied Mathematical Sciences Subprogram of the Office of
Energy Research, U.S. Department of Energy under Contract
DE-AC03-76SF00098 and in part by the National Science
Foundation under grant DMS94-14631.
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