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Recent work has suggested that the spectrum of fully developed turbulence is determined by the equilibrium
statistics of the Euler equations. The problem is to reconcile this fact with the irreversible aspects of turbulence.
The purpose of this paper is to show that a reconciliation is possible by producing simple systems whose
spectrum can be deduced from an analysis at equilibrium, yet they exhibit an irreversible transfer of an
appropriate variable from large scales to small scales and dissipation. The analysis includes the dependence of
the spectrum on the rate of energy transfer.@S1063-651X~96!12609-X#

PACS number~s!: 47.27.Ak, 05.20.2y

Recent work@1# has suggested that the inertial~Kolmog-
orov! spectrum of turbulence can be deduced by considering
Gibbsian equilibria of vortex filaments. This suggestion is
orthogonal to the usual derivation of that spectrum@2#,
where the irreversible nature of the energy transfer between
large and small sales constitutes the determining assumption.
It is obvious that turbulence as a whole cannot be viewed as
being in a Gibbsian equilibrium, since energy dissipation is
one of its most salient features. The natural suggestion is that
a full description of turbulence requires only a perturbation,
small in some appropriate metric, of a Gibbsian equilibrium.
This equilibrium must differ in substantial ways from the
Hopf-Lee@3# equilibrium, with the difference due to the im-
position of the constraints contained in the equations of fluid
dynamics. Similar arguments have been made in two-
dimensional turbulence.

It is not possible at present to decide whether these sug-
gestions are valid by rigorous analysis of the equations of
motion. The goal of the present paper is to show that these
ideas are plausible by exhibiting simple systems whose spec-
trum can be determined from equilibrium considerations, yet,
this spectrum is unchanged when these systems dissipate a
quantity by first transporting it across that spectrum to the
small scales, where it is lost. In these examples the amplitude
of the spectrum is related to the rate of dissipation, as in
Kolmogorov’s law, not because the dissipation creates the
spectrum, but, conversely, because the higher the amplitude
of the spectrum, the more energy there is to dissipate. These
models offer an interesting interpretation of the Kolmogorov
theory, and open the door to the use of fluctuation-
dissipation theorems and other near-equilibrium methods in
turbulence.

The first example consists of a discretized baker’s trans-
formation @4# transporting a passive quantity through a lad-
der of scales. This example is linear, and is included because
of its simplicity. The other example consists of a polymer
folding in a solution, with mass transported from large scales
to small scales and dissipated there. Various relations be-
tween turbulence theory and polymer dynamics have been
presented over the years@1#, and are closely linked to the
relation betweenf 4 field theories and vortex dynamics@5#.
Our example exhibits noninteger exponents as in the Kol-
mogorov law, and is quite relevant to the broader issues of
turbulence theory.

Consider first the unit square
D5$x,yu0<x<1,0<y<1%; we are going to implement on
D a discrete version of the baker’s transformation
x852x2@2x#, y85 1

2(x1@2x#), where@x# denotes the larg-
est integer<x. This transformation is ergodic and mixing
@4#, and thus is not an absurd paradigm for the growth in
disorder typical of turbulence.

To discretize the transformation, divideD into boxes:

Di j5$x,yu ih<x<~ i11!h, jh<y<~ j11!h%,

whereh5(1/n), n52m for some integerm, andi , j take the
values 0,1 . . . ,(n21). Furthermore, consider the discrete
function f5$f i j %, f i j50 or 1 on eachDi j . The discrete
baker’s transformation (i , j )→( i 8, j 8) is defined by

x5 ih, y5 jh,

x852x2@2x#, y85
1

2
~y1@2x# !, ~1!

i 85x8/h, j 85y8/h.

One can readily check that this transformation maps two
pairs (i , j ) on one (i 8, j 8) if i 8 is odd, and maps no (i , j ), on
( i 8, j 8) if i 8 is even. To construct the imagef8 of f under
the transformation, consider for oddi 8 the sums of the
f i , j at the preimages of (i 8, j 8), and setf i 8, j 850 if s50,
and f i 8, j 851 if s>1. Then, if s<1, set f i 811,j 850; if
s52, setf i 811,j 851. This construction preserves*fdx dy
and ~indeed,*fqdx dy for all q). The use of an integer-
valued functionf is designed to eliminate any entropy in-
crease due to smoothing. It is easily seen that, given an initial
f with few ‘‘holes,’’ the first few steps of the transformation
~1! approximate well the first few steps of the continuous
Baker’s transformation. However, the sequence of discrete
maps off is periodic with period 2m. In Fig. 1 we exhibit
initial data and every second subsequent state produced by
this mapping, withn532.

Start with initial dataf with few ‘‘holes;’’ for example,
with a functionf which equals 1 in somelh3 lh square,l
integer, l,n @as in Fig. 1~a!#. For the first few steps, the
‘‘energy’’ *f2dx dymoves to smaller and smaller scales, as
in simple models of turbulent cascades. In the nextm steps
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the energy comes back; the time average of the energy per
scale is a constant independent of scale. One can readily find
initial data for which the energy starts out roughly equidis-
tributed among scales and remains so. We shall not bother to
define a temperature and an entropy for this system, and shall
identify the the equipartition spectrum with an equilibrium
spectrum. Thus the energy spectrum has the form
E(k)5Akg, with g50, and its amplitudeA depends on the
amplitude of the initial data.

Now add an irreversible energy cascade to this model:
Start with ‘‘smooth’’ initial data, for examplef i j51 for
i , j<I ,I5@Azn#, where z5Sf i j /n

2,1 is the fraction of
sites wheref i j51, as in Fig. 1~a!. Remove energy at small
scales by settingf i j to 0 wheneverf i j51 andf i61,j50,
f i , j6150 ~i.e., whenever there is an isolated 1!. Feed energy
at large scales by filling in the missing 1’s whenever the
initial data would have been recovered if it were not for the
removal, i.e., once every 2m steps. Define a rate of energy

FIG. 1. ~a!–~e! Successive states produced by the baker’s transformation~every second state shown!.

54 2617TURBULENCE CASCADES ACROSS EQUILIBRIUM SPECTRA



dissipation« as the ratio of the number of 1’s removed per
q steps divided byq ~the limit q→` is reached in 2m steps!.
It is easy to see that the form of the spectrum is unchanged,
and that for smallz, A52m«1o(z), i.e., E(k)52m«kg.
One can also check that dissipation stops whenz.zc ,
zc50.5625, because for largerz no isolated 1’s appear. For
(zc2z) small and positive, numerical experiment shows that
« is proportional to (A2Ac)

2, whereAc is the amplitude at
z5zc , i.e.,A5Ac1C«0.5, whereC is a constant. As adver-
tised above, there is a relation betweenA and«, not because
the dissipation creates the spectrum but, conversely, because
the more energy there is in the ‘‘equilibrium’’ scales, more
of it can be dissipated. The recurrent behavior of the system
has parallels in vortex dynamics@6#.

We now turn to polymeric systems. The relation between
polymer statistics and the physics of superfluid vortices is
well known, as is the relation between polymers and classi-
cal vortex motion@1#. In particular, at a well-defined critical
temperature the statistics of a polymer and of a vortex fila-
ment are identical. We consider mass transport across scales
in a single polymer. At equilibrium, in which all the configu-
rations of the polymer are equally likely, the relation be-
tween^r N&, the average end-to-end length of a polymer with
N units ~‘‘monomers’’!, and the number ofN of units is
^r N&;Nm, wherem is the Flory exponent@7#. Flory’s value
for that exponent in three dimensions ism50.6; the correct
value is aroundm50.588. One can define a mass density
r5r(x) associated with the polymer, wherex is a spatial
location, and a density correlation function for a dilute sus-
pension of polymersR(r )5^r(x)r(x1r )&. An easy argu-
ment shows that forr small compared to the average length
of a polymer,R(r )5R(r )5const3r D23, wherer5ur u is the
length of r andD51/m >1.69. Indeed, assuming that there
is a monomer atx @something which happens with probabil-
ity proportional to r(x)#, the number of monomers in a
sphere of radiusr aroundx is proportional tor D, the number
of monomers in a shell betweenr , andr1dr is proportional
to r D21, and their density is proportional tor D23. A Fourier
transform yields a ‘‘mass spectrum’’E(k)5Ak2D, where
A is a constant andE(k) is the Fourier transform ofR inte-
grated over a sphere of radiusk5uku. The functionE(k) is a
mass analog of the energy spectrum of hydrodynamics. The
closeness ofD to the real value of the Kolmogorov exponent
is coincidental@8#. The constant in the ‘‘mass spectrum’’ law
is proportional to the mass density; the constant of propor-
tionality is dimensional and thus not worth pursuing.

We now endow this system with dynamics, and with a
mass source at large scales and a mass sink at small scales.
By way of dynamics we use the Madras-Sokal algorithm@9#
that probes the equilibrium configurations of the polymer:

First place the polymer on a cubic lattice, in particular so that
the number of its configurations is finite for finiteN; identify
the bonds in the lattice with monomers. To allow for the
finite volume of the monomers, make the lattice polymer
self-avoiding, i.e., forbid any site from being visited twice.
Then list all the isomorphisms of the lattice, i.e. all length-
preserving transformations that map the lattice on itself; in
three space dimensions, there are 48 such isomorphisms, rep-
resented by certain matrices with entries which are either 0,
1, or21. Pick one end of the polymer to be the ‘‘free end.’’
The dynamics proceed as follows: Pick a bond on the poly-
mer at random, rotate the part of the polymer between the
bond picked and the free end by one of the isomorphisms
picked at random with equal probabilities; if the result is
self-avoiding, this is the next configuration of the polymer; if
the result is not self-avoiding, the next configuration is taken
as identical to the previous configuration.

This folding algorithm samples the equilibrium configu-
rations of the polymer@9#. Following ample precedent~for
example, Ref.@10#!, we pretend that this algorithm repre-
sents the dynamics of the system, on the theory that true
dynamics and the sampling algorithm both probe the same
set of configurations with the same probabilities once the
transients are gone.

We now modify this system so as to create a mass cas-
cade across scales. Orient the polymer once and for all; after
each rotation in the Madras-Sokal algorithm examine the
polymer for ‘‘hairpins,’’ i.e. configurations in which thej th
and (j12)th segments~the numbering being sequential
along the polymer! are antiparallel; thej th, (j11)th, and
( j12)th then form aU-shaped structure~a ‘‘hairpin;’’ see
Ref. @11#!. This is the smallest-scale structure on a self-
avoiding polymer. To create an energy sink at small scales,
replace this hairpin by a single segment connecting the be-
ginning of the j th segment to the end of the (j12)th. This
removes mass at the smallest scale; the result is obviously
self-avoiding.

Every p steps (p to be chosen!, add up the numberM of
segments lost, and add to one end of the polymer a straight
line with M bonds. If it is not possible to construct such a
line without perturbing the polymer, wait a few steps until it
is possible. Experience shows that the wait is short. This
addition of a straight line represents a mass injection at large
scales. Mass is thus irreversibly transferred from large to
small scales, where it is removed.

How does this mass transfer affect the spectrum? In Table
I we present the result of a calculation of the exponentm in
the relation^r N&;Nm deduced from numerical experiments
with varying N and varying choices ofp as a function of

TABLE I. Estimates of the inverse spectral exponentm in the presence of a cascade.

p Polymer lengthN
600 900 1200 1500 1800 2100 2400 2700 3000

50 0.562 0.560 0.554 0.557 0.561 0.563 0.565 0.564 0.563
N/6 0.578 0.587 0.583 0.584 0.586 0.581 0.579 0.579 0.579
N/2 0.552 0.565 0.568 0.566 0.568 0.569 0.571 0.571 0.572
2N/3 0.586 0.586 0.584 0.581 0.570 0.576 0.576 0.576 0.574
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N. The dependence of the results on the number of Monte
Carlo steps is not shown, because the spread in the results
provides a reliable check on the statistical error. The typical
number of Monte Carlo moves to equilibration was
K540N, with only the last half used in the averaging, the
rest being used to forget the initial conditions. We conclude
that the value ofm in the presence of the cascade is
m50.57 with a standard deviation of 0.005, independently of
p. The corresponding exponent in the spectral power law
E(k)5Ak2D is D5m51.75, with a standard deviation of
0.01. Note that these results are not sharp enough to exclude
the possibility that there is a small difference between the
equilibrium value ofD and the value ofD in the presence of
a cascade, but if there is one, it is small~comparable with
0.01! and not at all comparable to the difference of 11/3
between the Hopf equilibrium exponent and the Kolmogorov
exponent; the latter large difference is one reason for the
belief that the inertial range of turbulence is far from equi-
librium. ~Note that a rough calculation of the same general
kind had already been carried out for a vortex filament model
in Ref. @12#!.

A rate of mass transfer« can now be estimated: The num-
ber of attempted foldings per unit length of the polymer is
proportional to the number of Monte Carlo steps divided by
the numberN of monomers.~The relevant number is the
number of folding per unit length rather than the number of
foldings by itself because we are interested in the rate of
energy transfer locally in space, in analogy with hydrody-
namics; without the division byN, the longer the polymer
the less each section would be folded per unit time!. The rate
of energy transfer« is the limit of the limit of number of
segments removed inK steps, divided byKN, as K in-
creases.

Numerical calculation shows that« is, within the statisti-
cal error, proportional to the number of monomersN; this is

heuristically transparent, as we expect the number of ‘‘hair-
pins’’ formed in a given number of steps to be proportional
to the number of monomers. The spectral law is thus
E(k)5C«k2D, whereC is a dimensional constant. As in the
baker’s transformation, the appearance of« in the law does
not mean that the mass cascade creates the spectrum, but
only that the more mass there is, the larger the energy trans-
fer.

One may wonder whether the fact that« appears with
exponent 1 in both examples has some significance which
detracts from the value of our examples. This is not the case.
The linear relation betweenE and« in the first example is
only an approximation that holds at small amplitude. In the
second example, the linear relation is a consequence of the
proportionality between the number of hairpins and the
length of the polymer in three space dimensions. One can
expect the number of hairpins to grow faster than that length
in the recurring two-dimensional case@13#, and thus yield an
exponent less than 1 for«. The same expectation holds in
vortex dynamics near critical points@1#.

In summary, we have produced simple examples that
demonstrate the possibility of having spectra of Kolmogorov
type be determined by equilibrium considerations, and re-
main unmoved by the presence of energy transfer across
scales. Thus there is not necessarily a dichotomy between the
kind of methods used in standard ‘‘equilibrium’’ field theo-
ries and the kind of methods appropriate for turbulence.
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